New BMPs on Drainage and Leaching Jeremy Dyson, Syngenta, Switzerland # **Outline** - Context for Developing & Using the New BMPs - Factors Affecting Pesticide Movement & Its Diagnosis - The BMP Measures - Pesticide Use Practices - Agronomic Practices - Drainage & Irrigation Practices - Conclusion & Next Steps ## **Context for Developing & Using the New BMPs** - Key to completing the 'TOPPS umbrella' for water protection - The aim is to meet society's expectations for clean water by reducing pesticide movement down soil profiles where unacceptable - BMPs cover two kinds of pesticide movement with water in soil profiles: - Drainage: via artificial drains to surface water - Leaching: down to groundwater - Water protection mostly achieved by strict EU regulatory procedures - Unacceptable movement sometimes occurs at the extremes - Product use patterns & pesticide movement potential - Local soil & climate characteristics + field management practices ## **Context for Developing & Using the New BMPs** When should the Drainage and Leaching BMPs be implemented? ## Reactively - When unacceptable movement occurs - Focus on pesticide use BMPs - Improve conventional agriculture - Product stewardship ## **Pro-Actively** - Before unacceptable movement occurs - Focus on agronomy BMPs etc. - Support sustainable agriculture - Land stewardship ## **Factors Affecting Pesticide Movement & Its Diagnosis** - Pesticide factors determined partly by use rates & stongly by movement potential - Climate factors drive pesticide movement (total rainfall) & rates of degradation (temperature) - Soil hydrology different soil & water scenarios for drainage & leaching (for unacceptable findings pesticide-climate factors implicit) Soil hydrology diagnosis needed to limit pesticide movement ## **Factors Affecting Pesticide Movement & Its Diagnosis** ## Pesticide movement vulnerability decision trees: Drainage Factors: drainage type, cracks, subsoiling, % clay, WHC | Drainage due
to low-perme-
ability soil | Large cracks/macropores¹ occur | | | High risk | |---|---|--|--------------------------|-------------| | | Large cracks/macropores do
not occur in most years | Subsoiling or moling done | | High risk | | | | No subsoiling or
moling done | Clay >35% | High risk | | | | | Clay 25 to 35% | Medium risk | | | | | Clay <25% | Low risk | | Drainage to
control shallow
groundwater | Mineral soil | Large cracks/
macropores occur | | High risk | | | | Large cracks/
macropores do
not occur in most
years | WHC ³ <150 mm | High risk | | | | | WHC 150-230 mm | Medium risk | | | | | WHC >230 mm | Low risk | | | Peaty ² soil | | | Low risk | Decision tree co-developed by academia, technical institutes & industry ## **Factors Affecting Pesticide Movement & Its Diagnosis** ## Pesticide movement vulnerability decision trees: Leaching Factors: GW depth, cracks, soil type, no-till, WHC | | Large cracks/macropores ² occur | | High risk | |-------------------------------------|--|--------------------------|-------------| | Shallow ¹
groundwater | Large cracks/macropores do not occur in most years | Sowing under no-till | High risk | | | | WHC ³ <150 mm | High risk | | | | WHC of 150 to 230 mm | Medium risk | | | | WHC >230 mm | Low risk | | | | Peaty soil ⁴ | Low risk | | No shallow
groundwater | Shallow soil ⁵ on fractured rock | | High risk | | | Other soil | Sowing under no-till | Medium risk | | | | WHC <150 mm | Medium risk | | | | WHC >150 mm | Low risk | Decision tree co-developed by academia, technical institutes & industry ### **The BMP Measures - Pesticide Use Practices** ### What to do? | Types of BMP Measure | The BMP Measures | |---|--| | Adapt application timing | Avoid applications shortly before heavy rainfall is forecast Use split applications if possible (to spread the risk) Avoid applications in the drainflow / GW recharge season* Consider using alternative products* | | Reduce use rates / field | Reduce applied rates within label conditions Use seed treatment instead (doses normally lower) Use pest monitoring to refine choice of product / Al Use variable rates across fields if justified / feasible Use mixture products if feasible to manage pests* | | Optimise overall use rate across catchment area | Depends very strongly on the crop rotation Rotate pesticides used for individual crops in the rotation* Restrict pesticide applications in most vulnerable fields* | ^{*}Use reactively if there are unacceptable findings; others pro-actively #### The BMP Measures - Pesticide Use Practices #### How to do it? - Check product labels / weather forecasts - Check with product stewardship advisors, e.g. agronomists and ## Look to the Future & Go Digital by Following Investments in: - Mapping tools over which fields to apply to due to vulnerability - Decision support tools over when to apply due to pest risks - Precision technology over which parts of fields to apply to ## **The BMP Measures - Agronomic Practices** #### What to do? | Types of BMP Measure ¹ | The BMP Measures | |---|--| | Optimise crop rotation | Select crop rotations to include optimisation of crop health Alternate winter and spring crops on fields Alternate crops with tap and fibrous root systems | | Grow cover crops | Select cover crops to fit crop rotation & benefit farmers Brassicas (mustards, raddishes, turnips) Legumes (vetches, clovers) Grasses & cereals (oats, rye, ryegrass) | | Adapt tillage in soils with large cracks / macropores | If drainage or leaching is an issue, then consider using Shallow tillage on vulnerable fields to reduce the impact* | ¹All highlighted in the Sustainble Use Directive as core to IPM *Use reactively if there are unacceptable findings; others pro-actively ## **The BMP Measures - Agronomic Practices** • Why do it? To work more productively with Ecosystem Services Optimise Crop Rotation, Including Cover Crops & Adapt Tillage IPM & soil health **Explores soil** resources fully Sustainable cropping Helps recycle nutrients As little as possible, but as much as necessary Cover crops feed soils Why not do it? If costs > benefits. Too complex. Time consuming. ## The BMP Measures – Drainage & Irrigation Practices ## What to do? | Types of BMP Measure | The BMP Measures | |----------------------|--| | Drainage | Design drainage systems to avoid over-drainage Get advice to install primary drainage systems (~decades) Amend secondary drainage system practices (~5 years) | | Drainage Retention | Use retention structures (ponds, wetlands) if there are issues* | | Irrigation | Optimise scheduling - modern precision practices to meet crop water needs (real time needs vs. calendar estimation) Amend pesticide use if there are issues (design integrated practices for product application / irrigation)* | ^{*}Use reactively if there are unacceptable findings; others pro-actively ## **Conclusion & Next Steps** #### **Conclusion** - New drainage & leaching BMP framework defined - Relevant to drinking water providers to deliver clean water ## **Next Steps** Raise awareness & start implementing framework - Start changing practices as necessary - Pesticide Use: amend use pattern thinking - Agronomy: add ecosytem services thinking - Drainage & Irrigation: use it, don't lose it - Help farmers move to Sustainable Agriculture step-by-step ## Thank you for your attention! ### And to the drainage & leaching project team: - Professor Colin Brown, York University, UK - Jeremy Dyson, Syngenta, Basel CH - Professor Aldo Ferrero, University of Turin, IT - Professor Roland Kubiak, RLP Agroscience, DE - Volker Laabs, BASF, Limburgerhof DE - Jonathan Marks-Perreau, Arvalis, Boigneville FR - Benoit Real, Arvalis, Boigneville FR - Manfred Röttele, BetterDecisions DE - Robin Sur, Bayer, Monheim DE - Matthias Trapp, RLP Agroscience, DE