

New BMPs on Drainage and Leaching

Jeremy Dyson, Syngenta, Switzerland

Outline

- Context for Developing & Using the New BMPs
- Factors Affecting Pesticide Movement & Its Diagnosis
- The BMP Measures
 - Pesticide Use Practices
 - Agronomic Practices
 - Drainage & Irrigation Practices
- Conclusion & Next Steps

Context for Developing & Using the New BMPs

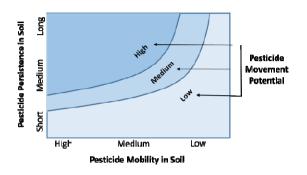
- Key to completing the 'TOPPS umbrella' for water protection
- The aim is to meet society's expectations for clean water by reducing pesticide movement down soil profiles where unacceptable
- BMPs cover two kinds of pesticide movement with water in soil profiles:
 - Drainage: via artificial drains to surface water
 - Leaching: down to groundwater
- Water protection mostly achieved by strict EU regulatory procedures
- Unacceptable movement sometimes occurs at the extremes
 - Product use patterns & pesticide movement potential
 - Local soil & climate characteristics + field management practices

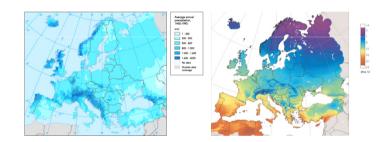
Context for Developing & Using the New BMPs

When should the Drainage and Leaching BMPs be implemented?

Reactively

- When unacceptable movement occurs
- Focus on pesticide use BMPs
- Improve conventional agriculture
- Product stewardship


Pro-Actively


- Before unacceptable movement occurs
- Focus on agronomy BMPs etc.
- Support sustainable agriculture
- Land stewardship

Factors Affecting Pesticide Movement & Its Diagnosis

- Pesticide factors determined partly by use rates & stongly by movement potential
- Climate factors drive pesticide movement (total rainfall) & rates of degradation (temperature)
- Soil hydrology different soil & water scenarios for drainage & leaching (for unacceptable findings pesticide-climate factors implicit)

Soil hydrology diagnosis needed to limit pesticide movement

Factors Affecting Pesticide Movement & Its Diagnosis

Pesticide movement vulnerability decision trees: Drainage

Factors: drainage type, cracks, subsoiling, % clay, WHC

Drainage due to low-perme- ability soil	Large cracks/macropores¹ occur			High risk
	Large cracks/macropores do not occur in most years	Subsoiling or moling done		High risk
		No subsoiling or moling done	Clay >35%	High risk
			Clay 25 to 35%	Medium risk
			Clay <25%	Low risk
Drainage to control shallow groundwater	Mineral soil	Large cracks/ macropores occur		High risk
		Large cracks/ macropores do not occur in most years	WHC ³ <150 mm	High risk
			WHC 150-230 mm	Medium risk
			WHC >230 mm	Low risk
	Peaty ² soil			Low risk

Decision tree co-developed by academia, technical institutes & industry

Factors Affecting Pesticide Movement & Its Diagnosis

Pesticide movement vulnerability decision trees: Leaching

Factors: GW depth, cracks, soil type, no-till, WHC

	Large cracks/macropores ² occur		High risk
Shallow ¹ groundwater	Large cracks/macropores do not occur in most years	Sowing under no-till	High risk
		WHC ³ <150 mm	High risk
		WHC of 150 to 230 mm	Medium risk
		WHC >230 mm	Low risk
		Peaty soil ⁴	Low risk
No shallow groundwater	Shallow soil ⁵ on fractured rock		High risk
	Other soil	Sowing under no-till	Medium risk
		WHC <150 mm	Medium risk
		WHC >150 mm	Low risk

Decision tree co-developed by academia, technical institutes & industry

The BMP Measures - Pesticide Use Practices

What to do?

Types of BMP Measure	The BMP Measures
Adapt application timing	 Avoid applications shortly before heavy rainfall is forecast Use split applications if possible (to spread the risk) Avoid applications in the drainflow / GW recharge season* Consider using alternative products*
Reduce use rates / field	 Reduce applied rates within label conditions Use seed treatment instead (doses normally lower) Use pest monitoring to refine choice of product / Al Use variable rates across fields if justified / feasible Use mixture products if feasible to manage pests*
Optimise overall use rate across catchment area	 Depends very strongly on the crop rotation Rotate pesticides used for individual crops in the rotation* Restrict pesticide applications in most vulnerable fields*

^{*}Use reactively if there are unacceptable findings; others pro-actively

The BMP Measures - Pesticide Use Practices

How to do it?

- Check product labels / weather forecasts
- Check with product stewardship advisors, e.g. agronomists
 and

Look to the Future & Go Digital by Following Investments in:

- Mapping tools over which fields to apply to due to vulnerability
- Decision support tools over when to apply due to pest risks
- Precision technology over which parts of fields to apply to

The BMP Measures - Agronomic Practices

What to do?

Types of BMP Measure ¹	The BMP Measures
Optimise crop rotation	 Select crop rotations to include optimisation of crop health Alternate winter and spring crops on fields Alternate crops with tap and fibrous root systems
Grow cover crops	 Select cover crops to fit crop rotation & benefit farmers Brassicas (mustards, raddishes, turnips) Legumes (vetches, clovers) Grasses & cereals (oats, rye, ryegrass)
Adapt tillage in soils with large cracks / macropores	 If drainage or leaching is an issue, then consider using Shallow tillage on vulnerable fields to reduce the impact*

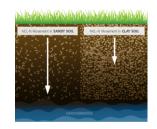
¹All highlighted in the Sustainble Use Directive as core to IPM

*Use reactively if there are unacceptable findings; others pro-actively

The BMP Measures - Agronomic Practices

• Why do it? To work more productively with Ecosystem Services
Optimise Crop Rotation, Including Cover Crops & Adapt Tillage

IPM & soil health



Explores soil resources fully

Sustainable cropping

Helps recycle nutrients

As little as possible, but as much as necessary

Cover crops feed soils

Why not do it? If costs > benefits. Too complex. Time consuming.

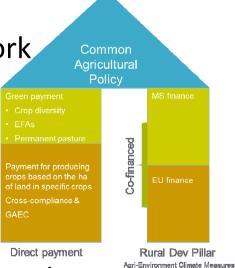
The BMP Measures – Drainage & Irrigation Practices

What to do?

Types of BMP Measure	The BMP Measures
Drainage	 Design drainage systems to avoid over-drainage Get advice to install primary drainage systems (~decades) Amend secondary drainage system practices (~5 years)
Drainage Retention	Use retention structures (ponds, wetlands) if there are issues*
Irrigation	 Optimise scheduling - modern precision practices to meet crop water needs (real time needs vs. calendar estimation) Amend pesticide use if there are issues (design integrated practices for product application / irrigation)*

^{*}Use reactively if there are unacceptable findings; others pro-actively

Conclusion & Next Steps


Conclusion

- New drainage & leaching BMP framework defined
- Relevant to drinking water providers to deliver clean water

Next Steps

Raise awareness & start implementing framework

- Start changing practices as necessary
 - Pesticide Use: amend use pattern thinking
 - Agronomy: add ecosytem services thinking
 - Drainage & Irrigation: use it, don't lose it
- Help farmers move to Sustainable Agriculture step-by-step

Thank you for your attention!

And to the drainage & leaching project team:

- Professor Colin Brown, York University, UK
- Jeremy Dyson, Syngenta, Basel CH
- Professor Aldo Ferrero, University of Turin, IT
- Professor Roland Kubiak, RLP Agroscience, DE
- Volker Laabs, BASF, Limburgerhof DE
- Jonathan Marks-Perreau, Arvalis, Boigneville FR
- Benoit Real, Arvalis, Boigneville FR
- Manfred Röttele, BetterDecisions DE
- Robin Sur, Bayer, Monheim DE
- Matthias Trapp, RLP Agroscience, DE