Photo by Chris de Wit on Unspla # TOPPS Water Protection Methodology and Decision Support Tools **Dr. Volker Laabs**, BASF SE TOPPS Chairman, November 2018 ## **Basic Methodology I** Multi-partner development of toolboxes of EU-wide recognized BMPs* for water protection in agriculture Achieve a holistic water protection concept at catchment level, covering all key pollution sources & pathways Promote a multi-stakeholder approach to come to solutions, which are acceptable and economically viable for farmers ## **Basic Methodology II** ### Water Contamination Pathway Analysis #### Point sources - Handling on farm (filling, cleaning, remnant management) - Before/after spraying in the field Easy to avoid #### **Diffuse sources** - Surface runoff Drainage - Spray drift Leaching Can be minimized - **Identification of relevant pathways** - Specific risk diagnosis and mitigation # Methodology: Point Sources Structured diagnosis and DST* # Methodology: Diffuse Sources Spray drift risk analysis and DST # Methodology: Diffuse sources Water flow analysis and DSTs # Rain Irrigation Surface Runoff Sub-surface Runoff Poorty permeable layer Drainage existing? **Drainage & Leaching** risk decision dashboards ## Runoff risk decision dashboards | Proximity to
Surface Water | Drainage
Status | Topographic
Position | Subsoil
Permeal | bility | WHC* | Risk Class &
Scenario | | | |-------------------------------------|--------------------------------|--|--|----------------------------------|---------------------------------|--------------------------|------|-------| | Field Adjacent
to Water Body | Not
Artificially
Drained | Bottom of
slope (con-
cave)/Valley
bottom (see
scenario A) | Plough pan +
Permeability disruption | | ALL WHCS | S 4 | & | | | | | | Plough pan OR | pan OR | <120 mm | S 4 | | | | | | | Permeability disruption | | >120 mm | S 3 | | | | | | | No plough pan &
Permeability disruption | | <120 mm | S 3 | | ass & | | | | | | | >120 mm | S 2 | _ | io | | | | Upslope/
Continuous
slope | Plough pan + Permeability disruption | | ALL WHCS | 5 4 | | 1 | | | | | Plough pan OR
Permeability disruption | | <120 mm | S 3 | | | | | | | | | >120 mm | S 2 | | | | | | | No plough pan &
Permeability disruption | | <120 mm | S 2 | I — | 2 | | | | | | | >120 mm | S 1 | | | | | | All Positions | Plough pan +
Permeability disruption | | ALL WHCS | SD 3 | | 3 | | | | | Plough pan OR
Permeability disruption | | <120 mm | SD 3 | | 4 | | | | | | | >120 mm | SD 2 | | | | | | | No plough pan &
Permeability disruption | | <120 mm | SD 2 | | 5 | | | | | | | >120 mm | SD 1 | | | | Field not Adjacent
to Water Body | All soils: | Transfer of | Run-off
reaches
YES water
body? | | | | | 6 | | | | run-off to | | | | Т3 | | | | | | downhill
field? | | | | Т 2 | | .7 | | | | | NO | | | Т1 | | 8 | | | | H E | | | | | | 9 | | | Run-o
strong
conce | | | High infiltration soil in buffer | | er | C 10 | | | | | | | talweg | Low infiltration soil in buffer | | er | C 11 | # Methodology: Diffuse sources Catchment diagnosis and risk maps ## Catchment diagnosis: Water flow pathway analysis - · Water output from field? - Does runoff reach surface water? - Do vulnerable areas for groundwater exist? - → Field visit necessary #### Catchment risk maps: e.g. > Infiltration restriction runoff - Saturation excess runoff - Concentrated runoff - Drainage - Leaching # **General Structure of BMPs and Measures**Harmonized Approach **BMP** = Risk diagnosis + adapted mitigation measure(s #### Measure A clear communication in form of a general recommendation statement, which will form the core of the harmonized EU BMP measure. A detailed description of requirements, materials, conditions, and parameters to consider in order to realize the recommendation goal (Country-specific modifications in national BMP toolboxes) # **Example: Runoff BMP Measure**Soil Management #### **Objective: Stop runoff at source** #### Prepare rough seedbed - Establish a rough seedbed with soil clods (do not roll over after seeding) - Slows down water flow - Increases infiltration #### Establish mini-dams in the field (e.g. potato) - Small bunds are created in between rows at seeding - Height and spacing of bunds needs to be adapted to local conditions - Minimization of runoff and erosion. ## **Example: Runoff Mitigation Measures** ## **Toolbox for Flexible Mitigation** | Soil management | Reduce tillage intensityManage tramlinesPrepare rough seedbedEstablish in-field bunds | Manage surface soil compactionManage subsoil compactionDo contour tilling/disking | | | |---------------------------|---|---|--|--| | Cropping practices | Use crop rotationDo strip croppingEnlarged headlands | Use annual cover cropsUse perennial cover cropsDouble sowing | | | | Vegetative buffers | Use in-field buffers Establish talweg buffers Use riparian buffers Use edge-of-field buffers | Manage field access areasEstablish hedgesEstablish/maintain woodlands | | | | Retention structures | Use edge-of-field bundsEstablish vegetated ditches | Establish retention ponds/wetlandsBuild fascines | | | | Adapted use of pesticides | Adapt application timingOptimize seasonal timing | Adapt product and rate selection | | | | Optimized irrigation | Adapt irrigation technique | Optimize irrigation timing and rate | | | #### **Best Practice at Catchment Level** ## Analysis ⇒ Diagnosis ⇒ Mgmt Plan Example: Run-off risk diagnosis (BE) Meeting with farmers Analysis and diagnosis in the field # **Further Decision Support Tools**Enabling Farmers # Web-based sprayer configuration tools **EOS** www.topps-eos.org #### **Step-Water** www.step-water.org #### **Conclusions** - ➤ TOPPS methodology is science-based and developed in a broad EU-wide multi-stakeholder approach: - **⇒** Pollution pathway analysis - **⇒** Specific risk diagnosis - **⇒** Selection of BMP measures - Web-based decsision support tools aim to empower many farmers to take decisions standalone - > Further web-based TOPPS DSTs to come to - increase the outreach to farmers - reduce complexity for decision making ## Thank you for your attention! www.topps-life.org