

Photo by Chris de Wit on Unspla

TOPPS Water Protection Methodology and Decision Support Tools

Dr. Volker Laabs, BASF SE TOPPS Chairman, November 2018

Basic Methodology I

Multi-partner development of toolboxes of EU-wide recognized BMPs* for water protection in agriculture

Achieve a holistic water protection concept at catchment level, covering all key pollution sources & pathways

Promote a multi-stakeholder approach to come to solutions, which are acceptable and economically viable for farmers

Basic Methodology II

Water Contamination Pathway Analysis

Point sources

- Handling on farm (filling, cleaning, remnant management)
- Before/after spraying in the field

Easy to avoid

Diffuse sources

- Surface runoff Drainage
- Spray drift Leaching

Can be minimized

- **Identification of relevant pathways**
 - Specific risk diagnosis and mitigation

Methodology: Point Sources Structured diagnosis and DST*

Methodology: Diffuse Sources Spray drift risk analysis and DST

Methodology: Diffuse sources Water flow analysis and DSTs

Rain Irrigation Surface Runoff Sub-surface Runoff Poorty permeable layer Drainage existing?

Drainage & Leaching risk decision dashboards

Runoff risk decision dashboards

Proximity to Surface Water	Drainage Status	Topographic Position	Subsoil Permeal	bility	WHC*	Risk Class & Scenario		
Field Adjacent to Water Body	Not Artificially Drained	Bottom of slope (con- cave)/Valley bottom (see scenario A)	Plough pan + Permeability disruption		ALL WHCS	S 4	&	
			Plough pan OR	pan OR	<120 mm	S 4		
			Permeability disruption		>120 mm	S 3		
			No plough pan & Permeability disruption		<120 mm	S 3		ass &
					>120 mm	S 2	_	io
		Upslope/ Continuous slope	Plough pan + Permeability disruption		ALL WHCS	5 4		1
			Plough pan OR Permeability disruption		<120 mm	S 3		
					>120 mm	S 2		
			No plough pan & Permeability disruption		<120 mm	S 2	I —	2
					>120 mm	S 1		
		All Positions	Plough pan + Permeability disruption		ALL WHCS	SD 3		3
			Plough pan OR Permeability disruption		<120 mm	SD 3		4
					>120 mm	SD 2		
			No plough pan & Permeability disruption		<120 mm	SD 2		5
					>120 mm	SD 1		
Field not Adjacent to Water Body	All soils:	Transfer of	Run-off reaches YES water body?					6
		run-off to				Т3		
		downhill field?				Т 2		.7
			NO			Т1		8
		H E						9
	Run-o strong conce			High infiltration soil in buffer		er	C 10	
				talweg	Low infiltration soil in buffer		er	C 11

Methodology: Diffuse sources Catchment diagnosis and risk maps

Catchment diagnosis: Water flow pathway analysis

- · Water output from field?
- Does runoff reach surface water?
- Do vulnerable areas for groundwater exist?
 - → Field visit necessary

Catchment risk maps: e.g.

> Infiltration restriction runoff

- Saturation excess runoff
- Concentrated runoff
- Drainage
- Leaching

General Structure of BMPs and MeasuresHarmonized Approach

BMP = Risk diagnosis

+ adapted mitigation measure(s

Measure

A clear communication in form of a general recommendation statement, which will form the core of the harmonized EU BMP measure.

A detailed description of requirements, materials, conditions, and parameters to consider in order to realize the recommendation goal

(Country-specific modifications in national BMP toolboxes)

Example: Runoff BMP MeasureSoil Management

Objective: Stop runoff at source

Prepare rough seedbed

- Establish a rough seedbed with soil clods (do not roll over after seeding)
- Slows down water flow
- Increases infiltration

Establish mini-dams in the field (e.g. potato)

- Small bunds are created in between rows at seeding
- Height and spacing of bunds needs to be adapted to local conditions
- Minimization of runoff and erosion.

Example: Runoff Mitigation Measures

Toolbox for Flexible Mitigation

Soil management	Reduce tillage intensityManage tramlinesPrepare rough seedbedEstablish in-field bunds	Manage surface soil compactionManage subsoil compactionDo contour tilling/disking		
Cropping practices	Use crop rotationDo strip croppingEnlarged headlands	Use annual cover cropsUse perennial cover cropsDouble sowing		
Vegetative buffers	 Use in-field buffers Establish talweg buffers Use riparian buffers Use edge-of-field buffers 	Manage field access areasEstablish hedgesEstablish/maintain woodlands		
Retention structures	Use edge-of-field bundsEstablish vegetated ditches	Establish retention ponds/wetlandsBuild fascines		
Adapted use of pesticides	Adapt application timingOptimize seasonal timing	Adapt product and rate selection		
Optimized irrigation	Adapt irrigation technique	Optimize irrigation timing and rate		

Best Practice at Catchment Level

Analysis ⇒ Diagnosis ⇒ Mgmt Plan

Example: Run-off risk diagnosis (BE)

Meeting with farmers

Analysis and diagnosis in the field

Further Decision Support ToolsEnabling Farmers

Web-based sprayer configuration tools

EOS

www.topps-eos.org

Step-Water

www.step-water.org

Conclusions

- ➤ TOPPS methodology is science-based and developed in a broad EU-wide multi-stakeholder approach:
 - **⇒** Pollution pathway analysis
 - **⇒** Specific risk diagnosis
 - **⇒** Selection of BMP measures
- Web-based decsision support tools aim to empower many farmers to take decisions standalone
- > Further web-based TOPPS DSTs to come to
 - increase the outreach to farmers
 - reduce complexity for decision making

Thank you for your attention!

www.topps-life.org